skip to main content


Search for: All records

Creators/Authors contains: "Robertson, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Using simultaneous multi-filter observations during the transit of an exoplanet around a K dwarf star, we determine the temperature of a starspot through modeling the radius and position with wavelength-dependent spot contrasts. We model the spot using the starspot modeling program STarSPot (STSP), which uses the transiting companion as a knife-edge probe of the stellar surface. The contrast of the spot, i.e., the ratio of the integrated flux of a darker spot region to the star's photosphere, is calculated for a range of filters and spot temperatures. We demonstrate this technique using simulated data of HAT-P-11, a K dwarf (Teff= 4780 K) with well-modeled starspot properties for which we obtained simultaneous multi-filter transits using Las Cumbres Observatory's MuSCAT3 instrument on the 2m telescope at Haleakala Observatory, which allows for simultaneous, multi-filter, diffuser-assisted high-precision photometry. We determine the average (i.e., a combination of penumbra and umbra) spot temperature for HAT-P-11's spot complexes is 4500 K ± 100 K using this technique. We also find for our set of filters that comparing the SDSSgandifilters maximizes the signal difference caused by a large spot in the transit. Thus, this technique allows for the determination of the average spot temperature using only one spot occultation in transit and can provide simultaneous information on the spot temperature and spot properties.

     
    more » « less
  2. Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.800.15+0.17g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of13518+17M(0.420.06+0.05MJup). It has an orbital period of3.7926220.000010+0.000010days and an orbital eccentricity of0.060.04+0.07. We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.

     
    more » « less
  4. Abstract

    We present and confirm TOI-1751 b, a transiting sub-Neptune orbiting a slightly evolved, solar-type, metal-poor star (Teff= 5996 ± 110 K,log(g)=4.2±0.1,V= 9.3 mag, [Fe/H] = −0.40 ± 0.06 dex) every 37.47 days. We use TESS photometry to measure a planet radius of2.770.07+0.15R. We also use both Keck/HIRES and APF/Levy radial velocities (RV) to derive a planet mass of14.53.14+3.15M, and thus a planet density of 3.6 ± 0.9 g cm−3. There is also a long-period (∼400 days) signal that is observed in only the Keck/HIRES data. We conclude that this long-period signal is not planetary in nature and is likely due to the window function of the Keck/HIRES observations. This highlights the role of complementary observations from multiple observatories to identify and exclude aliases in RV data. Finally, we investigate the potential compositions of this planet, including rocky and water-rich solutions, as well as theoretical irradiated ocean models. TOI-1751 b is a warm sub-Neptune with an equilibrium temperature of ∼820 K. As TOI-1751 is a metal-poor star, TOI-1751 b may have formed in a water-enriched formation environment. We thus favor a volatile-rich interior composition for this planet.

     
    more » « less
  5. Abstract

    The extreme environments of ultra-short-period planets (USPs) make excellent laboratories to study how exoplanets obtain, lose, retain, and/or regain gaseous atmospheres. We present the confirmation and characterization of the USP TOI-1347 b, a 1.8 ± 0.1Rplanet on a 0.85 day orbit that was detected with photometry from the TESS mission. We measured radial velocities of the TOI-1347 system using Keck/HIRES and HARPS-N and found the USP to be unusually massive at 11.1 ± 1.2M. The measured mass and radius of TOI-1347 b imply an Earth-like bulk composition. A thin H/He envelope (>0.01% by mass) can be ruled out at high confidence. The system is between 1 and 1.8 Gyr old; therefore, intensive photoevaporation should have concluded. We detected a tentative phase-curve variation (3σ) and a secondary eclipse (2σ) in TESS photometry, which, if confirmed, could indicate the presence of a high-mean-molecular-weight atmosphere. We recommend additional optical and infrared observations to confirm the presence of an atmosphere and investigate its composition.

     
    more » « less
  6. Abstract TOI-1899 b is a rare exoplanet, a temperate warm Jupiter orbiting an M dwarf, first discovered by Cañas et al. (2020) from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P = 29.090312 − 0.000035 + 0.000036 days, along with a radius of R p = 0.99 ± 0.03 R J . We have also improved the constraints on planet mass, M p = 0.67 ± 0.04 M J , and eccentricity, which is consistent with a circular orbit at 2 σ ( e = 0.044 − 0.027 + 0.029 ). TOI-1899 b occupies a unique region of parameter space as the coolest known ( T eq ≈ 380 K) Jovian-sized transiting planet around an M dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST, as well as studies of tidal evolution. 
    more » « less
    Free, publicly-accessible full text available August 3, 2024
  7. Abstract We confirm the planetary nature of two gas giants discovered by TESS to transit M dwarfs with stellar companions at wide separations. TOI-3984 A ( J = 11.93) is an M4 dwarf hosting a short-period (4.353326 ± 0.000005 days) gas giant ( M p = 0.14 ± 0.03 M J and R p = 0.71 ± 0.02 R J ) with a wide-separation white dwarf companion. TOI-5293 A ( J = 12.47) is an M3 dwarf hosting a short-period (2.930289 ± 0.000004 days) gas giant ( M p = 0.54 ± 0.07 M J and R p = 1.06 ± 0.04 R J ) with a wide-separation M dwarf companion. We characterize both systems using a combination of ground- and space-based photometry, speckle imaging, and high-precision radial velocities from the Habitable-zone Planet Finder and NEID spectrographs. TOI-3984 A b ( T eq = 563 ± 15 K and TSM = 138 − 27 + 29 ) and TOI-5293 A b ( T eq = 675 − 30 + 42 K and TSM = 92 ± 14) are two of the coolest gas giants among the population of hot Jupiter–sized gas planets orbiting M dwarfs and are favorable targets for atmospheric characterization of temperate gas giants and 3D obliquity measurements to probe system architecture and migration scenarios. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  8. Abstract

    We present a radial velocity (RV) analysis of TOI-1136, a bright Transiting Exoplanet Survey Satellite (TESS) system with six confirmed transiting planets, and a seventh single-transiting planet candidate. All planets in the system are amenable to transmission spectroscopy, making TOI-1136 one of the best targets for intra-system comparison of exoplanet atmospheres. TOI-1136 is young (∼700 Myr), and the system exhibits transit timing variations (TTVs). The youth of the system contributes to high stellar variability on the order of 50 m s−1, much larger than the likely RV amplitude of any of the transiting exoplanets. Utilizing 359 High Resolution Echelle Spectrometer and Automated Planet Finder RVs collected as part of the TESS-Keck Survey, and 51 High-Accuracy Radial velocity Planetary Searcher North RVs, we experiment with a joint TTV-RV fit. With seven possible transiting planets, TTVs, more than 400 RVs, and a stellar activity model, we posit that we may be presenting the most complex mass recovery of an exoplanet system in the literature to date. By combining TTVs and RVs, we minimized Gaussian process overfitting and retrieved new masses for this system: (mb−g=3.500.7+0.8,6.321.3+1.1,8.351.6+1.8,6.071.01+1.09,9.73.7+3.9,5.63.2+4.1M). We are unable to significantly detect the mass of the seventh planet candidate in the RVs, but we are able to loosely constrain a possible orbital period near 80 days. Future TESS observations might confirm the existence of a seventh planet in the system, better constrain the masses and orbital properties of the known exoplanets, and generally shine light on this scientifically interesting system.

     
    more » « less
  9. Abstract

    Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R, a mass of14.953.92+4.10M, and a density ofρ=0.610.17+0.18g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R<Rp< 7R) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs.

     
    more » « less
  10. Abstract

    The Transiting Exoplanet Survey Satellite (TESS) mission detected a companion orbiting TIC 71268730, categorized it as a planet candidate, and designated the system TOI-5375. Our follow-up analysis using radial-velocity data from the Habitable-zone Planet Finder, photometric data from Red Buttes Observatory, and speckle imaging with NN-EXPLORE Exoplanet Stellar Speckle Imager determined that the companion is a very low mass star near the hydrogen-burning mass limit with a mass of 0.080 ± 0.002M(83.81 ± 2.10MJ), a radius of0.11140.0050+0.0048R(1.08410.04870.0467RJ), and brightness temperature of 2600 ± 70 K. This object orbits with a period of 1.721553 ± 0.000001 days around an early M dwarf star (0.62 ± 0.016M). TESS photometry shows regular variations in the host star’s TESS light curve, which we interpreted as an activity-induced variation of ∼2%, and used this variability to measure the host star’s stellar rotation period of1.97160.0083+0.0080days. The TOI-5375 system provides tight constraints on stellar models of low-mass stars at the hydrogen-burning limit and adds to the population in this important region.

     
    more » « less